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P.L. Kapitsa [1, 2] and his followers have considered the problem 
of the flow of a thin film of viscous fluid on a vert ical  wall. O.V. 

Oolubeva [3] has generalized the equations of two-dimensional flows 

of an ideal fluid to include the motion in a film covering a curved 

surface. The motion of a thin Iayer of fluid over a sphere is considered 
in the theory of t idal  currents. 

The present paper concerns itself with a study of the unsteady flow 
of a thin layer of fluid on the surface of a body of revolution rotating 

with variable angular velocity about its axis and subjected to an exter- 
nal axial  body force in the presence of precipitation of fluid particles 

onto the free surface. The system of differential equations of this 

motion is obtained from the general equations of motion of a viscous 

fluid in a curvilinear coordinate system that moves with the body. The 

system of equations thus obtained is simplified by averaging the velo-  
city components over the layer thickness. 

NOTATION 

R(x) is the distance from points on the surface of the body of revo- 

lution to the axis; j(t) is the acceleration of the externai body force, 
directed along the axis of revolution; q is the volume of precipitation 

of fluid particles per unit t ime per unit surface area, q = q(x, ~, t); u i 

are veloci ty components at the axis (i = 1, 2, 8); a~ is the angular velo-  

city; p is the density; rzx and Vz~ 0 are tangential  stress components; 
is the viscosity; p is the pressure; h is the depth of the flow; v i are com- 
ponents of velocity averaged over the depth at the axis (i = 1, 2). 

1. Let us consider the  unsteady flow of a thin layer of viscous fluid 

on the surface of a body of revolution which revolves about its own 

axis and moves progressively along it. The absolute magnitudes of the 

angular veloci ty ~o (t) and of the rate of translational motion may vary 

with t ime, 

The motion of the fluid layer is considered in an orthogonal curvi- 

l inear coordinate system x, ~0, z, moving with the body; here the x-co-  

ordinate is measured along the meridian arc of the surface of the body 

of revolution, and the z-coordinate is measured along a normal to the 

surface of the body directed inward in relation to the fluid layer (see 

figure). 
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Fig. 1 

Let the contour of the body of revolution be specified by the ra- 

dius R(x), which is large compared with the layer thickness. It is also 

assumed that the contour is sufficiently smooth or that the radius of 

curvature of the meridian section is large in comparison with the lay-  

er thickness. If the layer thickness varies smoothly over the surface, 

then the curvature of the free surface will also be relat ively small. In 
this case it is natural to disregard surface tension. 

In addition to forces due to the flow of the fluid in the rotating 
coordinate system, the fluid is also acted upon by an external body 
force directed along the axis of rotation with accelerat ion j(t), where 

t is t ime. This force may be associated with the accelerated motion 
of the body along the axis, and in a particular case can be represented 

by the acceleration of gravity g (vertical axis). 

Particles of the same fluid may be precipitated onto the free sur- 

face of the layer at an average rate q(x, r t), which represents the 

volume of particies precipitated per unit t ime per unit surface area. 

The pressure of the gas medium at the free surface of the flow, P0, will 

be regarded as constant. 

Assuming that the layer thickness is small in comparison with the 
radii of curvature of the free surface and the surface of the body, from 

the general equations of motion of a viscous fluid in the selected coor- 
dinate system we get the following system of approximate equations: 
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Here u I, u 2, and u s are the velocity components with respect to 

the x, y, and z coordinate axes, p is the pressure, p is the density rzx 

and rz~ 0 are tangential  stresses. In the case of laminar flow 

Out Ou2 
~zx = ~t Oz ' "~z~ = i t  Oz " (1.5) 

Here, when z = O we have 

u i ~  u~. = u 3 =  0. (1.6) 

In the case of precipitation of particles of the same fluid onto the 

free surface ("rain ~) the dynamic effect of this phenomenon can be 

approximately represented by means of the momentum theorem in the 

form of averaged tangential  stresses at the free surface 

�9 zx = Pq (ui' - -  ui), %~ = pq (u2' - -  u~), for z = /t.(LT) 

Here u~ and u~ are the veloci ty  components of the joining particles with 

respect to the x, r coordinates before joining (defined with respect to 

the coordinate system moving with the body). If there is no particle 
fall-out, then the tangential  stresses at the free surface are assumed to 

vanish 

"rzx = 0, vz~ = 0, for z = h. (1.8) 

Note that in addition to Eqs. (1.7) or (1.8) and the condition that 

p (x, ~, h) = P0 = const, the following condition should be satisfied at 
the free surface z = h (x, ~o, t), 

Oh Oh u2 Oh 
~ - ~ -  ul"-~x @ ~ -  ~ ' : :  u3-}- q" (1.9) 

In addition to the aforementioned boundary conditions at the free 
surface and at the surface of the body, the layer thickness h and the 
veloci ty  distribution over its thickness must be specified in at least one 



J .  A P P L .  M E C H .  .AND T E C H .  P H Y S .  , NU!VIBER 3 69 

cross section (for example,  the initial cross section x = 0). In consider- 
ing problems of unsteady flow, the above boundary conditions must be 
supplemented by initial conditions expressing the distribution of layer 
thickness and velocity at the initial t ime instant. 

The problem as stated above can be simplified by using integral 
principles, in the same way as in boundary layer theory. It turns out 
that for a a thin flow with a free surface the use of these principles re- 
sults in a formulation of the problem which is similar to shallow water 
theory or to the hydraulic theory of flow in open channels. 

2. To simplify the differential equations obtained, we now average 
the  velocity components over the layer thickness and disregard the 
nonuniformity of velocity distribution over the thickness. We denote 

h 

v i ~ - ~ i u i d z .  
o 

(2.1) 

Disregarding the nonuniformity of the velocity distribution over the lay- 
er thickness, ~r assume that 

h h 

f uluk clz ~, vivkh, I u~ukdz~vivk(h- -z ) .  
o z 

(2.2) 

Integrating the continuity equation (1.4) with respect to z from o to h, 
and using Eq. (1.9), we get 

Oh + O ( v , h ) . ~ _ ~ _ _ v l h . +  i a(v2h) 
- ~ .  T R o9 q' (2.3) 

Integrating in a similar manner  the third dynamic equation, making use 
of (2.2), we obtain an approximate expression for the pressure distribu- 
tion over the layer thickness 

/ 1)2 2 \_~ 
P = P o +  O I ( h - -  z), /=(w~R, + 2 ~ v ~ + - f f ) V i - - R ' ~ - - m ' . ( 2 . 4 )  

Hence 

Op Oh O I Op _ O h +  Of a~ - P / ~ +  p (h-- Z)_az, - - -P/a~ a~ p (h--  z) g~. (2.5) 

Consideration of (2.5) shows that, by virtue of the assumed smal l -  
ness of h/R and of the curvature of the meridian cross section of the 
body surface, which is characterized by R"(x), the second terms in these 
expressions are small  in comparison with the first. Hence we may con-  
sider that 

Op _ p] ah Sp _ ah 
o~ o~ , o 6 -  p l ~ -  (2.6) 

Substituting these expressions into (1.1) and (1.2), integrating the latter 
over the thickness of the layer, and making use of (2.2), we obtain the 
approximate equations 

0 (vth) 0 (~t+h) i 0 (v~v+h) 

B '  
+ -~- (vj. 2 - -  vm 2) h - -  qv I = Fth ,  (2.7) 

Ft ~ / ]/ l - -  B '~ + o~2BR ' + 2~oR' v~ - -  

~ + ~  -- /oz  -~- [*z~ (~, 9, h) - ,~ (~, 9, o)1 ,  

O (v2h) 0 (hvsh) i O (v~h) 
0---T- -{- ~ -~- B 0( D k 2 vlv2h - -  qg~t = 'F2h, (2 .8)  

I fob 

Using Eq. (2.3), we can also represent these equations in the form 

o--T v x ~ z  + - f f  09 B 

vz Ovz -- R' vlve Y~ (2.10) 

According to (1.7) 

"rzx (z, % h) ~ pq (u (  ~ vl) , Tz~ (x, % h) = 9q (u2' - -  v2).(2.11) 

In the same way as in boundary layer theory, the tangential  stresses 
at the surface of the body can be approximately related to the average 
velocities by equations of the form 

Xzx (x, % O) : x/8~pvv 1, ~z~ (z, % O) = L/~ ~9vv~. (2.12) 

Here k is a dimensionless resistance coefficient for uniform flow in 
pipes, and v is the absolute value of the velocity. 
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